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CHAPTER 2

SINGLE-PHASE FLUID EQUATIONS

In this chapter, starting from gl"neral property balance equations and using the Reynolds transpcrt
theorem given in Chapter 1 and the Gauss theorem, the local and volume averaged conservation
equation for mass, momentum and energy will be derived for a s!ngle-phase flow.

l.! Local Fluid Equations

1.1.1 General Local Conservation Equation

The genera! local conservation is obtained by using the general property balance principle applied
to a material volume, V( i), bounded by a material surface, A( ,), in " flow £eid as illustrated in
Fig. 2. I. Obviously the element of volume moves with the local fluid velocity, V. Indicating by:

A(1:)

Figure 2.1 Material volume.

property per ~nit volume of material which may be any scalar, vector
or tensor property; for the present application, it will be assigned as
mass, momentum, or energy pe~ unit volume,

J", flow of property per unit area and time across the surface, A('r),
bounding the volume,VCr); it may be a vector or a tensor,

S", generation of the property per unit volume and time,

the general balance statement for a given property can be written as:
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Using the Reynolds transport theorem given by Eq. 1.33, the above equation can be written as:

Using the Gauss theorem:

L Ii.BdA=L V.BdV

(2.2)

(2.3)

--> =
and by interpreting n as 'P v and J.¥, the surface integrals appearing in Eq. 2.2 can be trans-
formed into volume integrals:

Since Eq. 2.4 applies to any volume dV, it call be deduced that the local instantaneous conserva­
tion equation will be in the following form:

(2.5)

The first term cfthe above equation is the time rate of change of the property, 1jI, per unit volume,
the second term is the rate of convection per unit volume, {he third term is the surface flux ano the
forth term is the volume source. Table 2.1 gives the most frequently used properties.

1.1.2 Fluid Conservation Equations

1) Local cOiltinuity equation

The conservation of mass can be expressed in a differential form by setting in Eq. 2.5:

'P =p, and

o

This is due to the fact that there is no surface property flux, J", and volume property generation,
S", , with respect to the fixed volume. Therefore, the m~ss conservation equation has the following
form:



Table 2.1

Most frequently used parameters

Property, cp Property per unit mass
ljI=cplm

Property per unit
volume, ljI=cpN
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II) Momentum equation

The conservation equation is obtained trom Eq. 2.5 by interpreting:

• the property IV as the momentum per unit volume, i.e., 'l' = p ~,
=

• the flux of the property, J'i' , as the surface stress t~nsor which represents the normal and shear
stresses acting on the surface (see Appendix II):

j'i'=-T=-(-pj+cr)=pI cr,

• the source term, S.. , as the momentum generated by volumetric forces such as gravity, i.e.:

The momentum equation has the following form:

a -t --+ -+ -+ -i> = --+ = -"o'tP V + V.p v v = -V .p I + V. cr + p g

III) Conservation of energy

In this case 'l', J'i' and S'i' are interpreted as:

• 'l': total energy which is the sum of the internal and kinetic energies per unit volume, i.e.

(27)
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• J'i' : heat conduction across the control surface and the work done by surface forces, i.e.

..... " "" .....
J== q - T. v

where T==-pI+cr.

• S'¥ : work done by the volumetric forces and the energy generation per unit volume (due to
chemical or nuclear reactions, for example), i.e.

-> -> .
S'i' == P g . v +Qg

Substituting the aoo';e interpretations into Eq. 2.5, the total energy equation is obtained as:

Q ( I·, -» -> ( 1-> -»->8tP U + Z v . v +V'.p U +"2 v . v v

-> ;, -> ( :: -» -> (= -» -> -> .
==-V' . q -V'.\? 1 . v +V'. (J. v, + p g . v +Qg

Using the definition of enthalpy:

the total energy equation becomes:

(2.B)

(2.9)

a ( 1-> --+) a-p h + - v . v - -p +at 2 at
-> ;, -> (= -» -> -> .=-V' ,q +V'. cr. v + p g . v +Qg (2.10)

The mechanical energy equation is obtained by multiplying sca!arly the momentum equation
(Eq. 2.7) by the velocity and has the following form:

a (1 2) -> 1 2->_ .... -> = .... (.... =) ........at Zpv +V' 'Zpv v- -v. V' pI +v . V' . 0' + P V . g (2.11)

Subtracting the mechanical energy equation from the total energy equation (Eq. 2.8) and taking
into account that:

--+ --+ -+ --+ -+ --+
V' .p v== p V' . v + v . V' P (2.12)
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and
-> (= -» -> (-> =) =-> ->V. CJ. V = V. V. CJ +CJ;V v

the following is obtained for the internal energy eguation:

a ~ --t --t~, --t -+ = --t --t .a/pu) + V.puv=-V.q -pV.v+CJ:Vv+Qg

Subtracting the mechanical energy equation from Eq. 2.10 yields enthalpy equation:

a ---+ -. --+ ~, H --t --t --+ --+ .
a/ph) +'11 .ph v=-V. q + a-eP+v. v p+CJ :Vv + Qg

(2.IJ)

(2.14)

(2.15)

At r!'is point, the unknown dependent variables are: the specific mass, p, three velocity compo­
nents u, 'I, w, the pressure, p, the specific internal energy and the temperature, for a total of s~ven.
The number of availRble equations are: one continuity (Eq. 2.6), three momentum (Eq. 2.7) and
one energy (Eq. 2.8), for a total of five. Thus, the five differential equations mllst be supple­
mented by two additional equations which do not introduce any additional unknowns. Tile addi·
tional equations are equations of stale given by:

and
0= p(p,u)

T= T(p,u)

(2.16)

(217)

where the independent variables are taken to be the pressure and specific internal energy. Other
combinations of dependent and independent variables are also possible. Finally, w<: note that other
properties such as viscosity, conductivity etc., are not constant and they are function of the tem­
perature and pressure.

The development of the local equations given above is not intended to be an exhaustive review of
the subject. Further developments to the local conservation equations can be found in !1uid me­
chanics text books.

1.2 Macroscopic Fluid Equations

The conservation equations (Eqs. 2.6, 2.7 and 2.8) in conjunctian with the constitutive heat con­
duction law (Fourier law) and the state equations (Eqs. 2. J6 and 2.17) provide sufficient informa­
tion to calculate the distribution of the dep<:ndent variables thIoughout the flow field. Additional
information must be supplied for the initial conditions of the fluid and the conditions at the bound­
ary of the flow field. However, most engineering analysis are conducted with simplif;ed one di­
mensional models obtained by area or volume averaging of the local equations. In the process of
averaging, information on the detailed distribution of the dependent variables normal to the flow
direction is lost; the effect of th~se distributions are accounted for by the use of empirical consti­
tutive relationships (for example, wall friction and wall heat transfer coefficients for a flow in a
pipe). In complex flow geometries such as abrupt expansion and contraction, laterally intercon­
nected parallel subchannds, dividing or converging steams a lot of engineering judgement should
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be used during the use of the averaged equations. Continued comparison of the predictions of the
area or volume averaged models with experimental data are necessary to determine both the
soundness of the approximations associated with the model and the techniques employed in the
application of a one-dimensional model to complex multidimensional systems.

i. 2.i Generalised Volume Averaged Conservation Equations

Thl" generalised volume averaged conservation equation is obtained by integrating the general lo­
cal conservation equation (Eq. 2.5) ov~r a geometric volume Vet) and combining it with the gen­
eralised tral'sport theorem given in Chapter 1 (Eq. 1.34). The integration of the local conservation
e'luation (Eq. 2.5) over the geometric volume Vet) gives:

f Ba'l' dv+f v.'P vdv+f v. j~, dv-f S'l'dV= 0
V{,) 't V{,) ~t') V{,)

(2.18)

The cornbina~ion of the abcve equation with generalised transport theorem (Eq. 1.34) yields:

d -> -> ..
-d J 'PdV=-J 'V.'PvdV-J 'V.j'l'dV

't VI') q,) V{,)

(2.19)

The first two volume integral on the right hand side of the above equation can be transformed into
surface integrals bye the use of Gauss theorem. Therefore Eq. 2.19 b::comes:

(2.2Q)

This the generalised macroscopic (volume integrated) balance equation. The term on the left hand
side of the equation is the time rate change of the property IjJ within the volume V(r), the first
term on the right hand side is the rate of convection throughout the surface A(1} bounding the
volume, the second term is the flow of property through the same surface and finally the last term
shows the property generated within the volume.

1.2.2 Volume integrated Conservation Equations

I) Macroscopic mass balance

By interpreting:

'P =p, and

the mass conservation equation in the volume Vet) can be expressed as:

d
d J pdV=-J Ii .p(v -ro)dA

t VI') A(t)
(2.21)
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In the above equation, if ro = ;; we have a material volume; if w= 0 we have a fix control
volume.

II) Macroscopic momentum balance

Interpreting:
~

qJ =p v,
= = = ~

J,¥= -T=P I-a and
~

SIfI=pg

the macroscopic momentum balance equation is obtained as:

-!i f p ~ dV ~ _.J n.p ;; (v -0;1ciA - f n.p JdA
d-c Vet) A(t) / A(T)

+J Ii . cr d4 +5 p gdV.
A(T) V(t)

III) Macroscopic total energy balance

Interpreting:

(2.22)

I ~ ....
'P =pe =p(u + 2" v . v),

= -..11 = .-.
J'fJ ;:: q -T. v and

.... --. .s'¥ = P g. v + Q
g

the macroscopic energy balance is obtained as.

d
d Ji pedV= Jr pe n.(~ -00) d4 - f 11 .qIf ciA

t V(t) A (\) A ('t)

f --.o:~ J --. .... J .+ n . T. v ciA + p g . v dV+ Q'> dV.
.-i (T) Vet) Vet) 0

(2.23)

The volumetric body force, g, which appears iii. the forth integral on the right hand side of
Eq. 2.23 can be derived from a scalar potential function in the fo!lowing form:

-+ --.

g=-Vcj> .

Therefore, the work term due to the volumetric force C2,n be w!"itten as:

J --..... f --.--'p g . v dV = - p v . V ~ dV
Vet) Vet)

Frcm vector analysis we know that:

Substituting Eq. 2.26 into Eq. 2.25 we obtain:

(2.24)

(2.25)

(2.26)
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(2.27)

The first term on the right hand side of Eq. 2.27 can be transformed into a surface integral by use
ofGauss theorem:

(2.28)

the second teml of the same equation can be rewritten by use of the local continuity equation
(Eq. 2.6) as:

(2.29)

S:Jbstituting Eqs. 2.28 and 2.29 into Eq. 2.27 we obtain:

(2.30)

Using the generalis~d transport theorem, interpreting 'II as P9 and assuming that the scalar pcten­
tial <I> is independent of time, the last term on the right hand side of the ~.bove flquation can b.:
written as:

(2.31)

Combining Eqs. 2.30 and 2.3 I, we obtain:

(2.32)

Substituting Eg. 2.32 into Eq. 2.23 we get:

where the heat flux is given by the Fourier law ofconduction:

~ -+
q =-kV I .

(2.33)

(2.34

In order to close the above conservation equations, two state equations as given by Eqs. 2.16 and
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2.17 must also be supplied. Finally, the fluid transport properties such as viscosity and conductiv­
ity are also needed.
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